
Since its initial isolation from human gallstones more 
than two centuries ago, the lipid cholesterol (C27H46O) 
has continued to occupy scientists and clinicians, and 
its physiological and pathological importance cannot 
be denied. In particular, levels of cholesterol have been 
strongly associated with the risk of atherosclerosis and 
cardiovascular disease. Like other sterols, cholesterol is 
largely hydrophobic. It is biosynthesized by all mamma-
lian cells and predominantly localizes to cell membranes, 
where it interacts with the adjacent lipids to regulate 
rigidity, fluidity and permeability of the bilayer. In addi-
tion, cholesterol can bind numerous transmembrane 
proteins, helping to maintain or alter their conforma-
tions. Cholesterol also interacts with numerous sterol 
transport proteins that facilitate cholesterol trafficking 
and regulate its subcellular distribution1,2.

On the plasma membrane, where the majority of 
total cellular cholesterol resides3, cholesterol is often 
packed with sphingolipids and glycosylphosphatidylinositol- 
anchored proteins, forming dynamic, nanoscale micro-
domains that can coalesce to form relatively ordered 
structures with established roles in the modulation of 
membrane trafficking, signal transduction and host–
pathogen interactions4. Beyond its role in membrane 
structure and function, cholesterol via enzymatic and 
non- enzymatic routes gives rise to various oxysterols5, 
some of which are further metabolized into bile acids. 
Oxidative cleavage of the side chain of cholesterol 
generates pregnenolone, the common precursor to all 
other steroid hormones. These cholesterol derivatives 
are actively engaged in a diverse array of biological 
processes. Further, cholesterol can covalently modify 
Hedgehog and Smoothened proteins, ensuring proper 

Hedgehog signalling and embryonic development6,7. 
Given such crucial functions in diverse physiological 
contexts, disrupted metabolism of cholesterol can cause 
several congenital human diseases (Table 1). There is also 
increasing evidence of a close relationship between cho-
lesterol metabolism and acquired diseases that include, 
as discussed above, cardiovascular disorders but also 
Alzheimer disease and many types of cancer8–10.

A series of landmark discoveries led to the current 
understanding of cholesterol metabolism. It is now 
known that cellular cholesterol levels are determined 
by the interplay between de novo biosynthesis, uptake, 
export and storage (Fig. 1). In brief, cholesterol syn-
thesis starts from acetyl- CoA and involves concerted 
actions of more than 20 enzymes, most of which 
localize in the membrane of the endoplasmic retic-
ulum (ER). Cholesterol can also be derived from die-
tary sources. In this case, cholesterol is absorbed by 
Niemann–Pick type C1 (NPC1)-like 1 (NPC1L1) pro-
tein on the apical surface of enterocytes in the intes-
tine11, which then releases this dietary cholesterol as 
chylomicrons, from which cholesterol is taken up by the 
liver. The liver — the main site of cholesterol biosyn-
thesis — delivers both endogenously synthesized and 
exogenously acquired cholesterol to the bloodstream 
as very- low- density lipoproteins (VLDLs). After process-
ing in the bloodstream, the VLDLs generate circulating 
low- density lipoproteins (LDLs), which can be taken up 
by peripheral cells via receptor- mediated endocytosis12. 
Within the cell, cholesterol is dynamically transported 
between various organelles by vesicular and non- 
vesicular mechanisms to fulfil its multifaceted func-
tions13. Surplus cholesterol can be exported to lipid- free 

Sterols
a subgroup of steroids with 
a hydroxyl group at the C-3 
position of the a- ring. a steroid 
is a biologically active organic 
compound with four rings 
(a–D) arranged in a specific 
molecular configuration.

Sphingolipids
a class of lipids with a polar 
head group and two non- polar 
tails. The core of a sphingolipid 
is an amino alcohol called 
sphingosine.

Glycosylphosphatidylinositol- 
anchored proteins
Proteins with glycosylphos-
phatidylinositol (gPi) attached 
at the C- termini. The gPi 
anchor is a unique mode of 
protein binding to the plasma 
membrane.
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or lipid- poor apolipoprotein A- I (apoA- I) produced by the 
liver, intestine and pancreas via passive or active mech-
anisms to generate high- density lipoproteins (HDLs)14. 
Excess cholesterol is esterified by acyl coenzyme 
A:cholesterol acyltransferase (ACAT; also known as  
SOAT) to cholesteryl esters15, which are either stored 
as a cholesterol reservoir in cytosolic lipid droplets or 
released as a major constituent of plasma lipoproteins, 
including the aforementioned chylomicrons, VLDLs, 
LDLs and HDLs. HDLs are finally transported from 
peripheral tissues back to the liver and intestine, where  
cholesterol is recycled or eliminated, as well as to steroido-
genic organs, where cholesterol is used to generate  
steroid hormones. These processes are tightly governed  
by multiple transcriptional and post- translational regu-
latory circuits that function as an integrative system  
capable of responding to varying intracellular and  
physiological cues to ensure cholesterol homeostasis.

In this Review, we summarize the current knowl-
edge of key molecular pathways involved in each major 
aspect of cellular cholesterol metabolism. We also discuss 
how these pathways are coordinated to maintain choles-
terol homeostasis under perturbations, prominently in 
cholesterol- rich conditions, which occur commonly as 
a result of a western- style diet. The mechanisms under-
lying vesicular and non- vesicular cholesterol trafficking 
in cells will only be briefly mentioned and the reader is 
referred to other recent reviews on this topic1,2,16,17.

Regulation of cholesterol biosynthesis
Almost all cells can synthesize cholesterol, and about 
50% of total synthesis in humans occurs in the liver18. 
Cholesterol biosynthesis is an energetically expensive 
process requiring significant inputs from acetyl- CoA, 
ATP, oxygen and the reducing factors NADPH and 
NADH. Accordingly, it must be tightly regulated. In 
this section, we briefly review three crucial players of 
the cholesterol biosynthetic pathway, namely, sterol 
regulatory element- binding protein 2 (SREBP2), which 
functions as a master transcriptional regulator of cho-
lesterol biosynthesis, and two rate- limiting enzymes 

of the biosynthetic pathway: 3-hydroxy-3-methyl-
glutaryl coenzyme A reductase (HMGCR) and squalene 
monooxygenase (Fig. 2).

Regulation of SREBP2
Three closely related isoforms of SREBPs (SREBP1a, 
SREBP1c and SREBP2) exist in mammals, among 
which SREBP2 selectively regulates the genes encoding  
cholesterologenic enzymes19,20. SREBP2 is indispens able 
for embryonic development, and Srebp2-deficient mice 
die in utero with limb bud malformations21, probably as 
a result of impaired Hedgehog signalling. The regulation 
of SREBP2 is discussed below.

Regulation of SREBP2 protein egress from the ER and 
its proteolytic activation. SREBP2 is synthesized as an 
ER- anchored precursor consisting of an N- terminal 
transcription factor domain containing a basic- helix–
loop–helix–leucine zipper motif; two transmembrane 
segments separated by a short, lumen- facing loop; and 
a C- terminal regulatory domain that interacts with the 
WD- repeat domain of SREBP- cleavage activating pro-
tein (SCAP) in a stoichiometric ratio of 4:4 in yeast22.  
To become active, SREBP2 must translocate from the ER 
to the Golgi apparatus, where site 1 protease (S1P) and 
S2P act sequentially to liberate the N- terminal fragment 
from the membrane. The processed SREBP2, designated 
nuclear SREBP2 (nSREBP2), then enters the nucleus as a 
homodimer, binds to the sterol regulatory element (SRE) 
sequence in the promoters of target genes, including 
HMGCR and SQLE (encoding squalene monooxygenase),  
and upregulates their transcription23.

The exit of SREBP2 precursor from the ER is regu-
lated by cholesterol via SCAP, which binds SREBP2 via 
its C- terminal domain. SCAP senses and responds to 
ER cholesterol fluctuations by switching between open 
and closed conformations to modulate its binding to 
COPii- coated vesicles23. When ER membrane cholesterol 
is depleted, the SCAP–SREBP2 complex is sorted into 
COPII vesicles and moves from the ER to the Golgi for 
proteolytic activation of SREBP2 (Fig. 2a). As shown in 

Table 1 | genetic diseases caused by disturbed cholesterol homeostasis

Disease underlying mechanism Featured symptoms Mutant genes refs

Niemann–Pick type C 
disease

Cholesterol accumulation within 
lysosomes

Neurodegeneration; enlarged liver and spleen NPC1, NPC2 297

Schnyder corneal 
dystrophy

Enhanced cholesterol production 
due to HMGCR stabilization

Cholesterol accumulation in the cornea; corneal 
opacification

UBIAD1 298

Smith–Lemli–Opitz 
syndrome

7-Dehydrocholesterol accumulation 
and cholesterol deficiency

Mental and growth retardation; cleft palate; 
malformations of heart, kidney and genitals (males); 
polydactyly or syndactyly

DHCR7 299

Familial 
hypercholesterolaemia

Impaired LDLR- mediated LDL uptake Markedly elevated plasma levels of cholesterol containing 
LDLs; premature coronary heart disease

LDLR, APOBa, 
PCSK9b, ARH

300,301

Tangier disease Impaired ABCA1-mediated 
cholesterol efflux

Extremely low HDL and apoA- I; massive deposition of 
cholesteryl esters in macrophage- rich tissues; increased 
risk of coronary artery disease

ABCA1 302

Sitosterolaemia Impaired ABCG5 and 
ABCG8-mediated cholesterol efflux

Elevated plasma and tissue levels of plant sterols and 
cholesterol; xanthomas; premature cardiovascular disease

ABCG5, 
ABCG8

303

ABCA1, ATP- binding cassette subfamily A member 1; ABCG, ATP- binding cassette subfamily G member ; apo, apolipoprotein; ARH, autosomal recessive 
hypercholesterolaemia; DHCR7 , 7-dehydrocholesterol reductase; HDL , high- density lipoprotein; HMGCR , 3-hydroxy-3-methylglutaryl coenzyme A reductase; 
LDL , low-density lipoprotein; LDLR , LDL receptor ; NPC, Niemann–Pick type C; PCSK9, proprotein convertase subtilisin/kexin type 9; UBIAD1, UbiA prenyltransferase 
domain- containing protein 1. aThe mutations impair LDL–LDLR association. bGain- of-function mutations that promote LDLR degradation.

Oxysterols
The oxidized derivatives 
of cholesterol.

Bile acids
The hydroxylated steroids 
which are amphipathic and 
synthesized from cholesterol in 
the liver. bile acids are secreted 
into the intestine where they 
play an important role in 
emulsifying dietary lipids to 
facilitate their absorption.

Niemann–Pick type C1
(NPC1). a large (1278 amino 
acids in humans), 13-pass 
transmembrane protein that 
binds cholesterol with the 
3β-hydroxyl group and 
the tetracyclic ring of 
cholesterol buried and the 
iso-octyl side chain exposed 
via the N- terminal domain. 
NPC1 is ubiquitously 
expressed and localizes on 
lysosomal membrane. 
Mutations in NPC1 cause 
95% of NPC cases.

Chylomicrons
The triglyceride- rich lipid 
particles in the blood and 
lymph that are solely produced 
by the intestine. Chylomicrons 
deliver lipids to the liver and 
extrahepatic tissues. after 
depletion of their triglycerides 
by the extrahepatic tissues, 
chylomicrons become 
chylomicron remnants that 
are cleared by the liver.
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Chinese hamster ovary cells, when ER membrane cho-
lesterol is above 5 mol% of total ER lipids24, it binds to 
loop 1 of SCAP and triggers the SCAP sterol- sensing 
domain (SSD, comprising transmembrane domains 2–6)  
to interact with insulin- induced gene (iNSig) proteins  
(bOx 1; Fig. 2b). This blocks COPII binding to SCAP 
and causes the SCAP–SREBP2 complex to stay in the 
ER. Oxysterols such as 25-hydroxycholesterol are much 
more potent than cholesterol in triggering ER reten-
tion of the SCAP–SREBP2 complex by binding directly 
to INSIGs and promoting INSIG binding to SCAP25. 
In line with this, mutants of INSIG2, one of the two 
INSIG isoforms in mammals, that are unable to bind 
25-hydroxycholesterol fail to suppress proteolytic SREBP 
processing25. The central roles of SCAP and INSIGs in 
sterol- regulated SREBP2 activation are highlighted by 

the findings that mutants with disrupted SCAP–INSIG 
interaction (hamster SCAP Y298C, L315F or D443N 
mutations) display constitutive SREBP2 cleavage and 
activation regardless of the sterol status26,27, whereas 
those with impaired SCAP–INSIG dissociation (D428A) 
have attenuated SREBP2 cleavage even in the absence 
of sterols28.

Sterol- induced binding of SCAP to INSIGs also sta-
bilizes INSIG1, which otherwise undergoes degrada-
tion by the ubiquitin–proteasome pathway29,30 (Fig. 2a). 
Under sterol depletion conditions, this degradation  
of INSIG1 contributes to rapid dissociation of the SCAP–
INSIG complex and activation of the SREBP2 pathway, 
allowing transcription of downstream genes including 
Insig1 itself31. The newly synthesized INSIG1 contin-
ues to be targeted for degradation unless a sufficient 

Very- low-density 
lipoproteins
(VlDls). The triglyceride- 
rich lipid particles in the 
blood that are produced by 
the liver. VlDls enable fats 
and cholesterol to move 
within the water- based 
bloodstream. VlDls are 
converted to intermediate- 
density lipoproteins and 
low- density lipoproteins 
in the bloodstream.

Low- density lipoproteins
(lDls). The lipid particles 
enriched in cholesteryl 
esters. each lDl particle 
contains a single 
apolipoprotein b-100 
molecule and delivers lipids, 
mainly cholesterol, and 
vitamins to extrahepatic 
tissues, where it is taken 
up by an lDl receptor.

Apolipoprotein
(apo). a protein that binds 
lipids to form lipoproteins, 
which then transport lipids 
and fat- soluble vitamins in 
circulation.

COPII- coated vesicles
The membrane vesicles 
coated by coatomer ii (COP 
ii), which is a type of vesicle 
coat protein that facilitates 
the formation of transport 
vesicles from the 
endoplasmic reticulum (eR). 
COPii- coated vesicles exit 
from specialized regions of 
the eR membrane devoid 
of bound ribosomes, known 
as ‘eR exit sites’, and deliver 
their content to the golgi.

Insulin- induced gene 
(INSIG) proteins
iNSig proteins, including 
iNSig1 and iNSig2, are 
integral membrane proteins 
of the endoplasmic 
reticulum that mediate 
sterol regulation of sterol 
regulatory element- binding 
protein cleavage- activating 
protein (SCaP) and 
3-hydroxy-3-methylglutaryl 
coenzyme a reductase 
(HMg- Coa reductase).
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Fig. 1 | Major pathways of cholesterol metabolism in a polarized cell. Cholesterol is synthesized from acetyl- CoA 
through a series of ~30 reactions using 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) and squalene 
monooxygenase (SM) as the rate- limiting enzymes (highlighted in red). In addition to de novo biosynthesis, cholesterol 
carried by low- density lipoprotein (LDL) particles in the blood can be taken up by LDL receptor (LDLR) at the basal  
surface of polarized cells (such as enterocytes or hepatocytes). Free cholesterol can also be absorbed from dietary 
sources by enterocytes in the intestine and from bile in the biliary ducts by hepatocytes in the liver. This absorption is 
mediated by Niemann–Pick type C1-like 1 (NPC1L1) and the associated flotillins present on the apical surface of these 
cells. Excess cholesterol is exported to the blood by ATP- binding cassette subfamily A member 1 (ABCA1) or the 
homodimer of ATP-binding cassette subfamily G member 1 (ABCG1), or to the intestinal lumen and bile ducts by the ABCG5 
and ABCG8 heterodimer. Cholesterol can also be converted to cholesteryl ester (CE) by acyl coenzyme A:cholesterol 
acyltransferase (ACAT; also known as SOAT) for storage in lipid droplets or for secretion as lipoproteins. CoA, coenzyme A; 
PP, pyrophosphate.
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amount of cholesterol is produced to induce a confor-
mational change of SCAP to which INSIG1 can bind. 
The dual requirement of cholesterol and INSIG1 pro-
tein for switching off the SREBP pathway constitutes a 
convergent feedback mechanism regulating cholesterol 
biosynthesis and uptake29. INSIG2 functions similarly 
to INSIG1 but does not rely on SREBP activation for 
production32.

Additional negative regulation of SREBP2 egress 
from the ER is provided by the multimeric ER proteins 
ERLINs and two RiNg- finger ubiquitin ligases, TRC8 (also 
known as RNF139) and RNF145 (ReFS33–35). ERLINs 
interact with the SCAP–SREBP2–INSIG complex 
tightly under cholesterol repletion conditions (Fig. 2b), 
and silencing of ERLINs stimulates SREBP2 processing 
as potently as cholesterol depletion does33. TRC8 is able 

to bind SREBP2 and SCAP directly to retain the com-
plex in the ER independently of its E3 ligase activity35, 
whereas RNF145 can ubiquitylate SCAP within a cyto-
plasmic loop essential for COPII binding34; these E3 
ligase- mediated events impair COPII binding to the 
SCAP–SREBP2 complex, leading to attenuated SREBP2 
processing34,35 (Fig. 2b).

In addition to ER exit, proper ER- to-Golgi targeting 
and Golgi anchoring of the SCAP–SREBP2 complex are 
also critical for SREBP2 activation. Serine/threonine 
protein kinase AKT (also known as PKB) promotes 
anterograde trafficking of the complex towards the Golgi 
in the COPII vesicles36. At the Golgi, the transmembrane 
protein progestin and adipoQ receptor 3 (PAQR3) — 
which is transcriptionally induced under cholesterol- 
depleting conditions — interacts with SCAP and 

Golgi

SCAP
(open)

ERLINs

a  Sterol depletion

b  Sterol repletion

UBIAD1
-Mut

+ GGOH

HMGCR INSIG

gp78,
TRC8,

RNF145

gp78,
TRC8

SM

MARCH6

S2PGolgi

SCAP
(closed)

SREBP2

COPII
vesicleProteasome

INSIG ERLINs

S1P

PAQR3

UBIAD1

ER lumen

ER lumen

Nucleus

TRC8
RNF145

gp78, TRC8,
RNF145

Proteasome

Proteasome

c  Post-translational modification of the nSREBP2 protein

mTORC1

ChREBP? Lipin 1

Lipin 1

AMPKGSK3

Ac

P

SCFFBW7

P PUb
S P

SRE

SREBP2

Nucleus

ERKsSIRT1 SUMO1

nSREBP2

P

FOXO3
SIRT6

Ac
SRE IRE

p300,
CBP

SREBP2
target 
genes

ERAD

Ub

MARCH6

RING- finger ubiquitin 
ligases
The largest type of e3 ubiquitin 
ligases with the RiNg (really 
interesting new gene) finger 
domains that bind two zinc 
ions in a unique ‘cross- brace’ 
arrangement through a defined 
motif of cysteine and histidine 
residues.

www.nature.com/nrm

R e v i e w s



SREBP2 and retains the complex in the Golgi37 (Fig. 2a). 
Notably, the interactions of SCAP–SREBP2 with PAQR3 
or with INSIG1 are mutually exclusive and regulated by 
cholesterol levels37.

Finally, the regulation of proteolytic activation of 
SREBP2 is supported by heat shock protein 90 (HSP90)38. 
HSP90 binds and stabilizes the SCAP–SREBP2 com-
plex both in the ER, thereby facilitating its transit to the 
Golgi, and in the Golgi (even after the N terminus of 
SREBP2 is cleaved), thereby preventing premature deg-
radation of SCAP and SREBP2 in the proteasomes and 
promoting SREBP2 activity.

Regulation of nSREBP2 protein. The protein level and 
transcriptional activity of nSREBP2 add another layer 
of regulation to the SREBP2 pathway (Fig. 2c). mTOR 
complex 1 (mTORC1), the master regulator of anabolic 
reactions, increases nSREBP2 proteins by phosphoryl-
ating and preventing nuclear entry of lipin 1 (ReF.39), and 
by suppressing cholesterol trafficking from lysosomes 
to the ER40 (see also Intracellular routes of LDLR and 

cholesterol after endocytosis below). On the contrary, 
the lipogenic transcription factor carbohydrate response 
element- binding protein (ChREBP) promotes ubiquityl-
ation and proteasomal degradation of nSREBP2 in an as 
yet unexplored mechanism41. The nSREBP2 phosphoryl-
ated by the serine/threonine protein kinase GSK3 can be 
targeted for degradation by FBW7, a substrate receptor 
of the SCF ubiquitin ligase complex42.

The transcriptional activity of nSREBP2 is also sub-
ject to modulation by post- translational modifications. 
The histone acetyltransferase p300 and its related protein 
CBP can bind and acetylate the N terminus of SREBP2, 
enhancing its expression and transcriptional activity43. 
Accordingly, ablation or inhibition of sirtuin 1 (SIRT1), 
which deacetylates SREBP2, increases SREBP2 abun-
dance in the nucleus44. As SIRT1 is activated by fast-
ing45, SIRT1-mediated deacetylation of SREBP2 halts 
the energy- consuming biosynthetic process of choles-
terol under nutrient deprivation conditions. Aside from 
acetylation, nSREBP2 can be phosphorylated by eRKs and 
aMPK for increased and decreased transcriptional activ-
ity, respectively46,47, as well as modified by sumoylation 
for decreased transcriptional activity48.

Transcription regulation of the SREBP2 gene. Like other 
SREBP2 targets, the SREBP2 gene itself is upregulated by 
nSREBP2 owing to the presence of a 10-base- pair SRE 
upstream of the transcription initiation site49. SREBP2 
also harbours the binding sites for transcription fac-
tors NF- Y and SP1, both of which act synergistically 
with nSREBP2 to upregulate SREBP2-dependent gene 
expression49. Between the SRE and the transcription 
initiation site there is a conserved insulin response ele-
ment, to which the transcription factor forkhead box O3 
(FOXO3) can bind50. FOXO3 then recruits SIRT6, 
which deacetylates histone H3 and downregulates the 
expression of Srebp2 in mouse liver50 (Fig. 2c). Of note, 
the FOXO3–SIRT6 complex also represses the expres-
sion of the proprotein convertase subtilisin/kexin type 9 
(Pcsk9) gene51, which is an SREBP2 target and a negative 
regulator of the LDL receptor (LDLR) pathway (see also 
PCSK9-induced degradation of LDLR and its regulation 
below). Under starvation conditions, when FOXO3 and 
SIRT6 are both active, decreased cholesterol biosynthe-
sis together with increased LDLR- mediated cholesterol 
uptake from blood ensures maximal utilization of the 
cholesterol pool in the body.

Regulation of HMGCR
Mammalian HMGCR is an ER- localized glycoprotein 
comprising a hydrophobic N- terminal domain that 
spans the membrane eight times and a large soluble 
C-terminal domain that projects into the cytosol52. Akin 
to SCAP, transmembrane domains 2–6 serve as the SSD 
that confers HMGCR sensitivity to sterol levels in the 
ER membrane (bOx 1). The cytosolic C- terminal domain 
is responsible for converting HMG- CoA to mevalonate, 
using two molecules of NADPH as the reducing reagent.

As the rate- limiting enzyme for cholesterol bio-
synthesis, HMGCR is highly regulated at transcrip-
tional, translational and post- translational levels53. The 
HMGCR gene is activated by nSREBP2 when sterol 

Fig. 2 | Mechanisms regulating cholesterol biosynthesis. The key mediator of 
cholesterol biosynthesis is sterol regulatory element- binding protein 2 (SREBP2), which 
is extensively regulated on several levels. a ∣ SREBP2 is synthesized on the endoplasmic 
reticulum (ER) but requires transfer to the Golgi for activation. In the ER , SREBP2 interacts 
with SREBP- cleavage activating protein (SCAP). When ER cholesterol is depleted, loop 1 
and loop 7 of SCAP interact, allowing coatomer II (COPII) to bind SCAP. The SCAP–SREBP 
complex exits the ER and anchors to the Golgi through progestin (not shown) and 
adipoQ receptor 3 (PAQR3). SREBP2 then undergoes proteolytic cleavage by site 1 
protease (S1P) and S2P, thereby releasing the N- terminal domain that enters the nucleus 
and activates transcription of target genes by binding the sterol regulatory element (SRE) 
in the promoter. The insulin- induced gene (INSIG) proteins in the ER , due to their 
dissociation from SCAP, are ubiquitylated by gp78 (also known as AMFR) and TRC8 
(also known as RNF139) and degraded by the proteasome. Sterol depletion also prevents 
3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) from binding to INSIGs 
and the associated E3 ubiquitin ligases (gp78, TRC8 and RNF145), as well as preventing 
squalene monooxygenase (SM) from binding to another E3 ubiquitin ligase, MARCH6, 
thereby stabilizing HMGCR and SM to support cholesterol biosynthesis (Fig. 1). b ∣ When ER  
cholesterol levels are high, INSIGs are recruited by SCAP, causing loop 1 and loop 7 
separation and COPII detachment from SCAP. The SCAP–SREBP2–INSIG complex is 
further retained in the ER by ERLINs and TRC8, which directly bind to the complex, 
and by ubiquitylation of SCAP by RNF145. Sterols also induce INSIGs–E3 ligase complex 
binding to HMGCR and MARCH6 binding to SM. The ubiquitylated HMGCR and SM 
are eventually degraded in proteasomes through ER- associated degradation (ERAD). 
In addition, in the presence of sterols, UbiA prenyltransferase domain- containing protein 1 
(UBIAD1) binds to HMGCR , preventing its removal through ERAD. However, when 
sufficient geranylgeraniol (GGOH) is generated, UBIAD1 translocates from the ER to the 
Golgi and no longer interacts with HMGCR, thereby accelerating HMGCR degradation. 
By contrast, Schnyder corneal dystrophy- associated UBIAD1 mutants (UBIAD1-Mut) are 
constitutively retained in the ER and delay sterol- induced ERAD of HMGCR . c ∣ In the 
nucleus, the protein level of nuclear SREBP2 (nSREBP2) is downregulated by lipin 1, a 
phosphatidic acid phosphatase whose phosphorylation by mTOR complex 1 (mTORC1) 
prevents its entry into the nucleus. nSREBP2 can be phosphorylated by the serine/
threonine protein kinase GSK3 and targeted for proteasomal degradation by the Skp, 
Cullin, F- box (SCF)–FBW7 ubiquitin ligase complex. Ubiquitylation of nSREBP2 is also 
mediated by carbohydrate response element- binding protein (ChREBP), but the exact 
mechanism is unknown. In addition, nSREBP2 can be acetylated by the histone 
acetyltransferase p300 and its related protein CBP, or phosphorylated by ERK proteins, 
for increased transcriptional activity. Sirtuin 1 (SIRT 1) can deacetylate nSREBP2 and 
counteract the stimulatory effects of p300 and CBP. SUMO1-mediated sumoylation 
and AMP- activated protein kinase (AMPK)-mediated phosphorylation repress the 
transcriptional activity of nSREBP2. Forkhead box O3 (FOXO3) represses SREBP2 
expression by binding a conserved insulin response element (IRE) and recruiting SIRT6 
for deacetylation of histone H3 at the SREBP2 promoter. Ac, acetyl group; P, phosphate 
group; S, small ubiquitin- like modifier (SUMO); Ub, ubiquitin.

SCF ubiquitin ligase 
complex
The complex that catalyses 
the ubiquitylation of proteins 
for degradation. The core 
components of the Skp, Cullin, 
F- box (SCF) complex include 
the scaffold protein Cul1, the 
RiNg- finger protein Rbx1/ROC1 
and the adaptor protein Skp1. 
The F- box protein (FbP) 
is the variable component 
determining substrate 
specificity. in most cases, FbPs 
recognize phosphorylated 
proteins.

◀
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concentrations are low. Translation of HMGCR mRNA 
can be blocked by unknown non- sterol isoprenoids 
through a poorly characterized mechanism54. In this 
section, we review regulation of HMGCR stability and 
activity through post- translational modifications.

INSIG- mediated ubiquitylation and degradation of 
HMGCR. HMGCR is relatively stable under sterol 
depletion conditions (half- life of about 12 h in cultured 
human fibroblasts)55. Its degradation can be induced by 
sterols, mostly oxysterols such as 25-hydroxycholesterol 
and 27-hydroxycholesterol, and methylated sterols such 
as lanosterol and 24,25-dihydrolanosterol (ReFS56,57). Two 
members of the vitamin E family, δ- tocotrienol and 
γ-tocotrienol, can also induce HMGCR degradation58. 
By contrast, cholesterol is a relatively weak cue for 
HMGCR degradation56.

INSIGs are absolutely required for the sterol- 
induced degradation of HMGCR. INSIG1 associates 
with ubiquitin ligases gp78 (also known as AMFR)59, 
TRC8 (ReF.60) and RNF145 (ReF.61). When oxysterols and 
lanosterol accumulate in the cell, INSIG1 is induced to 
bind the membrane domain of HMGCR56,62, triggering 
HMGCR ubiquitylation and its subsequent extraction 
from the membrane and proteasomal degradation via 
eR- associated degradation (ERAD)55,63,64 (bOx 1; Fig. 2b). 
INSIG1-mediated ubiquitylation and degradation of 
HMGCR is enhanced by UFD1, a component of the 
ERAD machinery that directly binds gp78 (ReF.65). These 
processes are further regulated by the prenyltransferase 

UBIAD1 (UbiA prenyltransferase domain- containing 
protein 1), which competes with INSIG1 to bind 
HMGCR and protects it from membrane extrac-
tion during ERAD66,67. geranylgeraniol accelerates the 
ERAD of HMGCR by facilitating ER- to-Golgi trans-
port of UBIAD1 (ReF.68). By contrast, specific mutations 
in UBIAD1 associated with Schnyder corneal dystro-
phy (Table 1) stabilize and sequester UBIAD1 in the 
ER, thereby also stabilizing HMGCR protein, which 
was shown to increase cholesterol biosynthesis in the  
cornea66,69 (Fig. 2b).

INSIG2 is also required for sterol- stimulated 
HMGCR degradation and, like INSIG1, recruits E3 
ubiquitin ligases to HMGCR55. Ectopic expression of 
INSIG2 in cells deficient in INSIG1 and INSIG2 fully 
restores sterol- accelerated ubiquitylation and degrada-
tion of HMGCR70. Recently, in the liver, the Insig2 gene 
was found to be a direct target of hypoxia inducible 
factor 1α, a major transcription regulator of hypoxia71. 
Accordingly, in mice exposed to hypoxia, upregula-
tion of INSIG2 and accumulation of lanosterol and 24, 
25-dihydrolanosterol contribute to reduced levels of 
hepatic HMGCR71,72. Fasting elevates the expression 
of Insig2, particularly Insig2a, in mouse livers as well73. 
The consequent increase of INSIG2 protein suppresses the 
SREBP pathway74, which, together with INSIG2-mediated 
HMGCR degradation as discussed above, blocks 
cholesterol biosynthesis during food deprivation.

A complex interplay exists between INSIGs and 
ubiquitin ligases. In the absence of sterols, INSIG1 is 

Box 1 | comparison of sterol- induced binding of iNSigs to ScaP and to HMgcr

sterol regulatory element- binding protein (sreBP)-cleavage activating protein (sCaP) and 3-hydroxy-3-methylglutaryl 
coenzyme a reductase (HMGCr) are both bound and regulated by insulin- induced gene (iNsiG) proteins (see the figure). 
the key residues involved in formation of the sCaP–iNsiG complex include Y298, L315 and D443 on sCaP and F115, 
Q132, t136, w145 and D149 on iNsiG2 (orange dots); the D428 position in sCaP (red dot) is responsible for regulating 
the dissociation of iNsiGs from sCaP. Binding of iNsiGs to HMGCr depends on the presence of the YiYF sequence in the 
75–78 position of HMGCr (yellow dots). although sCaP and HMGCr display little sequence similarity, they do share 
some common key features. First, both proteins are composed of eight transmembrane segments (with the sterol- sensing 
domain (ssD) comprising transmembrane domains 2–6) and a large C- terminal domain that projects into the cytosol. 
second, both are induced to interact with iNsiGs by sterols. Cholesterol can bind loop 1 of sCaP directly, whereas 
oxysterols bind first to iNsiG2 to recruit sCaP. the formation of the HMGCr–iNsiG complex is simulated by lanosterol 
and oxysterols. Lanosterol is hypothesized to bind HMGCr directly. whether oxysterol binding to iNsiGs is required for 
the iNsiG–HMGCr interaction is unclear. third, iNsiG binding to both proteins reduces cholesterol biosynthesis (Fig. 2). 
For sCaP, iNsiG binding changes the conformation of sCaP so that the MeLaDL motif responsible for coatomer ii 
(COPII) binding is no longer exposed and the trafficking of SCAP in complex with SREBP2 towards the Golgi is blocked. 
For HMGCR, INSIGs in complex with E3 ligases drive HMGCR ubiquitylation, targeting it for proteasomal degradation. 
er, endoplasmic reticulum.
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Sirtuin 1
(SiRT1). Member of a family 
of proteins that act 
predominantly as NaD- 
dependent deacetylases. There 
are seven sirtuins in mammals, 
SiRT1–SiRT7. Some sirtuins 
can remove various acyl lysine 
modifications from proteins.

ERKs
Widely expressed protein- 
serine/threonine kinases that 
are activated via the 
phosphorylation of tyrosine. 
activation of eRK can affect 
cell proliferation, survival, 
apoptosis, motility, metabolism 
and differentiation.

AMPK
(aMP- activated protein 
kinase). a central regulator 
of energy homeostasis that is 
activated when the cellular aTP 
level is low. aMPK activation 
inhibits cholesterol and fatty 
acid synthesis.

Mevalonate
a product generated from 
3-hydroxy-3-methylglutaryl 
coenzyme a (HMg- Coa) by the 
action of HMg- Coa reductase. 
The mevalonate pathway 
in mammals leads to the 
synthesis of sterols, 
isoprenoids, dolichol, haeme, 
ubiquinione and so forth.

Isoprenoids
a class of naturally occurring 
organic compounds that are 
composed of two or more 
units of isoprene. They are 
synthesized in the mevalonate 
pathway in mammals.

Lanosterol
The first sterol intermediate 
in the mevalonate pathway 
consisting of 30 carbons. 
lanosterol is synthesized by 
cyclization of squalene and can 
potently stimulate degradation 
of hydroxy-3-methylglutaryl 
coenzyme a reductase 
(HMgCR) without inhibiting the 
processing of sterol regulatory 
element- binding protein 
(SRebP).

ER- associated degradation
(eRaD). a surveillance system 
that clears misfolded proteins 
in the endoplasmic reticulum 
(eR) via ubiquitylation and 
proteasomal degradation.
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ubiquitylated, independently by gp78 (ReFS29,30) and 
TRC8 (ReF.75), and degraded by proteasomes. INSIG2 is 
relatively stable in cultured cells30,76. However, in mouse 
livers, depletion of gp78 elevates the protein levels of 
both INSIGs, with a more noticeable effect on INSIG2 
(ReF.77). These liver- specific gp78-knockout mice exhibit 
reduced biosynthesis of cholesterol and fatty acids, as 
inhibition of the SREBP pathway by INSIGs outweighs 
the stabilization of HMGCR by gp78 deficiency77. It 
is unclear why gp78 targets INSIG2 for degradation 
specifically in hepatocytes. gp78, TRC8 and RNF145 
are predicted to share similar structures78, and TRC8 
and RNF145 display sterol- dependent protein stability 
owing to the presence of the SSD35,79. However, TRC8 
has a much longer half- life than RNF145 (ReFS35,79). 
Knockdown of gp78 markedly slows TRC8 degradation 
without affecting RNF145 stability60,79. The presence of 
multiple, dynamically regulated ubiquitin ligases is likely 
to provide a fail- safe mechanism for efficient ERAD of 
HMGCR, as each E3 ligase may have different sensitivity 
to sterol levels and express in a tissue- specific manner.

Regulation of HMGCR activity by phosphorylation. 
HMGCR can be interconverted between phosphorylated 
and dephosphorylated forms. A single serine residue 
close to the very end of the catalytic domain (Ser871 in 
rodents and Ser872 in humans) is the key phosphoryla-
tion site80. Phosphorylation abolishes HMGCR activity 
without affecting sterol- induced degradation of the pro-
tein81. In the liver, HMGCR is primarily phosphorylated 
by AMPK82, which blocks cholesterol biosynthesis when 
intracellular ATP levels are low81. Inhibition of AMPK 
activity activates HMGCR and increases cholesterol 
production83,84. miR-34a, a microRNA overexpressed 
in non- alcoholic fatty liver disease, suppresses SIRT1, 
causing dephosphorylation of AMPK and, consequently, 
activation of HMGCR, which contributes to cholesterol 
accumulation in non- alcoholic fatty liver disease85. 
Despite these insights, much work is still needed to eluci-
date the physiological role of HMGCR phosphorylation 
in cholesterol biosynthesis.

Regulation of squalene monooxygenase
Squalene monooxygenase has been recently recognized 
as another rate- limiting enzyme beyond HMGCR in 
the cholesterol biosynthetic pathway86. The mamma-
lian squalene monooxygenase contains an extended 
N-terminal domain that is absent in lower organisms86,87, 
with the first 100 amino acids of the N terminus anchor-
ing the enzyme to the ER via a loop that partially trans-
verses the membrane88. However, a recent structural 
analysis shows two membrane- binding helical domains 
at the C terminus89. The exact membrane topology of 
squalene monooxygenase is still unknown.

Like HMGCR, squalene monooxygenase is con-
trolled at both transcriptional and post- translational 
levels. The SQLE gene has SREs and NF- Y and SP1 bind-
ing sites, and responds to sterols via SREBP2 (ReFS90,91). 
The squalene monooxygenase protein can be potently 
degraded in the presence of cholesterol in a process 
requiring an amphipathic helix in the first 100 amino 
acids of the N terminus, the e2 enzyme UBE2J2 and 

the E3 ubiquitin ligase MARCH6, but not INSIGs86,92–94 
(Fig. 2b). The amphipathic helix is proposed to attach 
transiently to the membrane at low cholesterol levels but 
to dissociate and unravel in response to excess choles-
terol, thereby allowing MARCH6 to bind92. This causes 
squalene monooxygenase ubiquitylation at the serine 
residues flanking the amphipathic helix95. Cholesterol 
also stabilizes MARCH6 by blocking its autoubiquity-
lation96. Beyond functioning as a ubiquitin ligase for 
squalene monooxygenase, MARCH6 also negatively 
regulates the SREBP2 transcriptional programme and 
thus expression of the SQLE gene97. Notably, although 
HMGCR and SQLE are transcriptionally co- regulated 
by nSREBP2, degradation pathways of HMGCR and  
squalene monooxygenase are triggered by different  
metabolic cues and rely on different molecular machine-
ries. These different means of regulation have a physio-
logical importance, whereby modulation of squalene 
mono oxygenase independently of HMGCR permits cho-
lesterol biosynthesis to be shut down while maintaining  
the biosynthesis of essential isoprenoids.

Regulation of cholesterol uptake
Besides biosynthesis, the diet and subsequent cholesterol 
uptake from the blood have key roles in maintaining 
cholesterol homeostasis. In this section, we overview 
mechanisms and regulators of NPC1L1-mediated cho-
lesterol absorption from the intestinal lumen and LDLR- 
mediated uptake of cholesterol containing LDL particles 
(LDL- c) from the blood (bOx 2; Fig. 3).

NPC1L1-mediated cholesterol uptake
NPC1L1 is a key mediator of cholesterol absorption, 
governing cholesterol uptake in enterocytes via clathrin- 
mediated endocytosis. NPC1L1 was first identified by 
virtue of its high sequence homology (42% identity and 
51% similarity) to NPC1 (ReF.98). It is an extensively glyco-
sylated, multi- spanning membrane protein expressed on 
the apical surface of enterocytes and the membrane of 
bile canaliculi of human hepatocytes11. NPC1L1 includes 
three large extracellular domains, 13 transmembrane 
segments and a short cytoplasmic C- terminal tail99. The 
N- terminal domain of NPC1L1 selectively binds cho-
lesterol and oxysterols in vitro100,101. One of the extra-
cellular loops (loop 2) has been determined as a binding 
site for the cholesterol absorption inhibitor ezetimibe102, 
thereby supporting pharmacological modulation of 
cholesterol absorption. Transmembrane segments 3–7 
comprise a predicted SSD as seen in SCAP, HMGCR, 
NPC1 and several other cholesterol regulators23. Finally, 
the C- terminal domain of NPC1L1 bears an endocytic 
signal sequence YVNxxF (where x is any amino acid) 
that binds to the endocytic adaptor NUMB to regulate 
NPC1L1 internalization, as well as the QKR sequence 
that recruits the LIM domain and actin- binding protein 1  
(LIMA1) to modulate NPC1L1 trafficking back to the 
cell surface103,104 (see below).

Mechanisms of NPC1L1-mediated intestinal choles-
terol uptake. The molecular mechanisms of NPC1L1-
mediated cholesterol uptake have been well delineated 
using cultured rat hepatoma cells. NPC1L1 resides 

Prenyltransferase
a class of enzymes that 
transfer prenyl moieties to 
acceptor molecules. They are 
responsible for menaquinone 
and ubiquinone biosynthesis, 
or protein modification called 
prenylation that is the covalent 
linkage of a lipid consisting of 
three or four isoprene units to 
a thiol of a cysteine side chain.

Geranylgeraniol
a diterpene alcohol containing 
20 carbons that is synthesized 
in the mevalonate pathway. 
geranylgeraniol can be used 
to synthesize vitamins e and K, 
and to modify proteins  
in a process known as 
geranylgeranylation.

E2 enzyme
also known as ubiquitin- 
conjugating enzyme. 
e2 enzymes perform 
the second step in the 
ubiquitylation reaction. 
Through the series of reactions 
of e1, e2 and e3, cellular 
proteins are linked to ubiquitin.

Bile canaliculi
Thin tubes formed by 
intercellular space between 
hepatocytes. They carry 
biles towards the interlobar 
bile ducts.
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primarily in the endocytic recycling compartment (ERC) 
under normal growth conditions (the steady state) and 
translocates rapidly to the plasma membrane upon cho-
lesterol depletion105,106. Replenishment of cholesterol 
triggers the inward transport of NPC1L1 together with 
cholesterol from the plasma membrane to the ERC105. 
Mechanistically, NPC1L1 interacts with cholesterol on 
the extracellular side and flotillins at the inner leaflet 
of the plasma membrane100,107. Cholesterol binding to 
NPC1L1 promotes the formation of specialized mem-
brane microdomains enriched in cholesterol, flotillins 
and gangliosides100,107,108, and causes the dissociation of the 
NPC1L1 C- terminal tail from the plasma membrane so 
that the YVNxxF sequence is available for NUMB reco-
gnition103. As a clathrin adaptor protein, NUMB fur-
ther recruits clathrin and clathrin adaptor AP2 to the 
invaginated microdomains, generating coated vesicles 
and then endocytic vesicles that migrate along actin  
filaments to the ERC105 (Fig. 3, bottom).

From the ERC, NPC1L1 can be recycled back to 
the plasma membrane for reuse. This process requires 
LIMA1, the small GTPase CDC42, the motor protein 
myosin Vb and actin filaments104,105,109,110. At steady 
state, CDC42 remains in the GDP- bound, inactive 
form and weakly interacts with NPC1L1, which in 
these conditions predominantly associates with another 
small GTPase RAB11a and RAB11 family- interacting 

protein 2 (ReFS109,110). Cholesterol depletion promotes the 
formation of GTP- bound, active CDC42 with increased 
avidity for NPC1L1, resulting in the dissociation of 
RAB11a from NPC1L1 (ReF.109) and the association 
of NPC1L1 with myosin Vb and actin mediated by 
LIMA1 (ReF.104). The downstream effectors of activated 
CDC42, N- WASP and Arp2/3 complex, further contrib-
ute to NPC1L1 translocation to the plasma membrane by  
promoting actin polymerization109.

This NPC1L1-mediated cholesterol uptake model 
is supported by multiple lines of evidence from in vivo 
studies. Both endogenous mouse NPC1L1 protein and 
transgenic human NPC1L1 protein are localized on the 
brush border membrane of mouse small intestine111,112. 
Oral gavage of cholesterol induces the internalization 
of NPC1L1 and cholesterol from the brush border 
membrane to the subapical region, and this process 
is blocked by ezetimibe111. Intestine- specific Numb or 
Lima1-knockout mice show impaired NPC1L1 recy-
cling and significantly reduced cholesterol absorption, 
and are resistant to diet- induced hypercholesterolae-
mia103,104. Similarly, individuals carrying a G595D muta-
tion in NUMB that decreases the interaction between 
NUMB and AP2, or a K306 frameshift mutation in 
LIMA1 that impairs NPC1L1 recycling back to the sur-
face, display significantly lower cholesterol absorption 
and plasma LDL- c, high levels of which are strongly 

Endocytic recycling 
compartment
(eRC). an intracellular 
cholesterol- rich site composed 
of a mixture of individual and 
interconnected vesicles and 
tubules near the microtubule- 
organizing centre. The eRC is 
Rab11a positive and regulates 
vesicular recycling to the 
plasma membrane.

Flotillins
a family of two ubiquitously 
expressed, membrane- 
associated proteins, namely, 
flotillin 1 and flotillin 2. 
They play a role in forming 
cholesterol- rich membrane 
microdomains, endocytosis 
and signal transduction.

Gangliosides
a species of plasma 
membrane- concentrated 
lipids. each ganglioside 
molecule is composed of a 
glycosphingolipid linked to 
one or more sialic acid.

Box 2 | comparison of lDlr- mediated and NPc1l1-mediated cholesterol uptake

Low- density lipoprotein (LDL) receptor (LDLr) and Niemann–Pick type C1-like 1 protein (NPC1L1) both mediate 
cholesterol uptake from the extracellular sources through the clathrin- dependent pathway. However, several obvious 
differences exist between these two processes (see the figure). within a polarized cell such as enterocytes and 
hepatocytes, LDLr is localized at the basolateral membrane and is responsible for acquiring cholesterol in the form 
of LDLs from the blood, whereas NPC1L1 is on the opposite side to receive unesterified cholesterol from the intestine 
lumen and liver canalicular space. LDLr- mediated LDL endocytosis employs autosomal recessive hypercholesterolaemia 
(arH) and DaB2 as the clathrin adaptor proteins, whereas NPC1L1-mediated cholesterol uptake requires NuMB. 
Notably, arH, DaB2 and NuMB are all clathrin- associated sorting proteins sharing a phosphotyrosine- binding (PtB) 
domain that recognizes the canonical (F/Y)xNPx(F/Y) endocytic sorting signal, to which the NPxY/F motif of LDLr and 
YvNxxF of NPC1L1 conform (where x is any amino acid). upon internalization and shedding the clathrin coats, the LDLr–
LDL complex undergoes a pH- induced dissociation, which releases LDLr for recycling and LDL for further hydrolysis in 
the late endosomes and lysosomes. the NPC1L1–cholesterol complex is instead delivered to a designated endocytic 
recycling compartment (erC), from which it can be recycled back to the plasma membrane through actin- mediated 
trafficking regulated by LiM domain and actin- binding protein 1 (LiMa1). regardless of sources and pathways, the 
absorbed cholesterol eventually arrives at the endoplasmic reticulum for sensing, transport or esterification (also Fig. 3).
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correlated with the risk of cardiovascular disease104,113. 
In line with this, the R1325X mutation produces a trun-
cated NPC1L1 protein lacking the NUMB- recognizing 
endocytic motif103, and is associated with lower plasma 
LDL- c and lower cardiovascular disease incidence in 
humans114.

Regulation of NPC1L1 expression. The human NPC1L1 
gene contains two SRE sites and is activated by SREBP2 
(ReFS115,116). Multiple SREs are also present in the mouse 
promoter117, and animals on a high- cholesterol diet 
have markedly reduced expression of Npc1l1 in the 
intestine118,119, indicating a negative feedback loop 
between the cholesterol abundance and the pathway of 
its absorption.

In addition to SREBP2, other mechanisms contrib-
ute to regulating NPC1L1 expression as well. In human 

liver and intestinal cells, SREBP2-mediated activation of 
NPC1L1 is increased by hepatocyte nuclear receptor 4α  
(HNF4α)120. In human liver- derived HepG2 cells, the 
PPARα–RXRα nuclear receptor complex can upreg-
ulate NPC1L1 transcription121. Negative regulation of 
Npc1l1 expression is driven by the transcription factor 
CREBH, which binds and represses the activity of mouse 
Npc1l1 promoter122. Moreover, the transcriptional co- 
repressor SHP can inhibit SREBP2-mediated transacti-
vation of Npc1l1 in mouse intestine, acting downstream 
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Fig. 3 | Mechanisms regulating cholesterol uptake.  
Low- density lipoprotein (LDL) receptor (LDLR) is 
expressed on the plasma membrane of most cells, 
including the basolateral surface of enterocytes and 
hepatocytes. Niemann–Pick type C1 (NPC1)-like 1 
(NPC1L1) is specifically expressed on the apical surface of 
enterocytes and human hepatocytes. Top: LDL in the blood 
is captured by LDLR on the cell surface and the LDL–LDLR 
complex is internalized in clathrin- coated pits involving 
the adaptor proteins autosomal recessive hypercholester-
olemia (ARH) or DAB2. As the endosomal pH decreases, 
LDLR dissociates from LDL and is recycled by the CCC and 
WASH protein complex back to the surface for additional 
uptake. LDL is further delivered towards lysosomes, and 
the carried cholesteryl esters (CEs) are hydrolysed to 
cholesterol (C). Cholesterol is inserted into the limiting 
membrane of lysosome by coordinated actions of NPC2 
and NPC1, followed by trafficking to downstream 
membranes including the plasma membrane and 
endoplasmic reticulum (ER). The oxysterol- binding protein- 
related protein 2 (ORP2) may deliver cholesterol from 
lysosomes to the plasma membrane. Transfer to the ER 
occurs at ER–lysosome contact sites and is mediated by 
oxysterol- binding protein- related protein 1L (ORP1L). 
Peroxisomes are also engaged in cholesterol transport from 
lysosomes to the ER by forming membrane contact sites 
with both organelles using lysosomal synaptotagmin VII 
(SYT7), peroxisomal phosphatidylinositol 4,5-bisphosphate 
(PI(4,5)P2) and ER- resident extended synaptotagmins 
(E-Syts). Proprotein convertase subtilisin/kexin type 9 
(PCSK9) binds LDLR on the plasma membrane and is 
internalized with the LDLR protein in clathrin- coated 
vesicles. The PCSK9–LDLR interaction increases as the 
endosomal pH decreases, preventing LDLR from recycling 
back to the surface. The PCSK9–LDLR complex is 
eventually degraded in lysosomes. The intracellular 
ubiquitin ligase inducible degrader of the LDL receptor 
(IDOL; also known as MYLIP) ubiquitylates LDLR at the 
cytoplasmic C- terminal tail. The ubiquitylated LDLR is 
internalized by epsin 1 and sorted by ESCRT complexes 
(endosomal sorting complexes required for transport) to 
multivesicular bodies (not shown) and eventually to 
lysosomes for degradation. Bottom: cholesterol in the 
intestinal lumen or bile binds the N- terminal domain of 
NPC1L1. This causes a conformational change of NPC1L1 
that exposes the C- terminal endocytic motif, which is 
recognized by NUMB. This promotes NPC1L1 endocytosis. 
The resulting clathrin- coated vesicles migrate along actin 
filaments to the endocytic recycling compartment (ERC). 
Exactly how cholesterol is delivered from the ERC to the ER 
is unknown. Upon cholesterol depletion, NPC1L1 establishes 
an interaction with myosin Vb through LIM domain and 
actin- binding protein 1 (LIMA1), and translocates on actin 
filaments from the ERC back to the plasma membrane. 
These processes are promoted by the GTP- bound, active 
form of small GTPase CDC42. Ub, ubiquitin.

Brush border
The apical plasma membrane 
consisting of an array of 
densely packed microvilli, 
which are tiny projections 
intended to increase the 
surface area for absorption.
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of a postprandial increase in FGF19 signalling117. 
Surprisingly, there is evidence that fasted mice and 
glucose- deprived Caco-2 cells have reduced NPC1L1 
mRNA levels123. Activation of liver x receptors (LXRs) or 
ablation of sortilin, a sorting receptor closely implicated 
in cardiovascular disease, negatively regulates NPC1L1 
expression124,125, with the underlying mechanisms yet to 
be determined.

Expression of NPC1L1 is also dependent on the 
regulation of protein degradation. The mechanisms 
of NPC1L1 degradation are poorly understood, but 
both lysosomal and ubiquitin–proteasome pathways of  
degradation seem to contribute126.

LDLR- mediated LDL endocytosis
LDLR is a main player responsible for the uptake of 
cholesterol (as a component of LDLs) by peripheral 
cells from the circulation. LDLR is a cell surface glyco-
protein consisting of five structurally and functionally 
distinct modules: an N- terminal apoB and apoE bind-
ing domain, a large epidermal growth factor (EGF) 
precursor homology domain (encompassing two EGF- 
like repeats (EGF- A, EGF- B), a six- bladed β- propeller 
and a third EGF- like repeat (EGF- C)), an O- linked 
oligosaccharide- rich domain, a single transmembrane 
domain and a relatively short C- terminal tail containing 
a highly conserved NPxY internalization motif127.

Intracellular routes of LDLR and cholesterol after endo-
cytosis. LDLR is the transcriptional target of SREBP2. 
Thyroid hormones also induce LDLR expression by bind-
ing directly to its promoter128. Once synthesized, the 
120-kDa LDLR precursor is glycosylated as it transits 
along the secretory pathway, converting to a 160-kDa 
mature protein that is found in the plasma membrane 
of most cell types129. In polarized cells, such as hepato-
cytes and enterocytes, LDLR is localized to the baso-
lateral membranes in contrast to NPC1L1, which is  
found apically (bOx 2; Fig. 3). Surface LDLR captures 
the circulating LDL via the extracellular ligand bind-
ing domain, and recruits endocytic adapters aRH and 
DAB2 as well as the associated AP2 and clathrin via the 
cytoplasmic NPxY sequence130,131. This enables LDL to 
be incorporated into clathrin- coated vesicles that sub-
sequently pinch off from the plasma membrane and 
enter the endocytic pathway12. In the acidic endosome, 
LDLR undergoes a conformational change and dissoci-
ates from the bound LDL132. LDLR is then returned by 
the COMMD–CCDC22–CCDC93 endosomal recycling 
complex back to the cell surface for additional rounds 
of endocytosis133,134 or is directed to lysosomes for deg-
radation by interaction with PCSK9 (serine protease 
produced predominantly by the liver; see below). LDLR 
can also be targeted for lysosomal degradation directly 
from the plasma membrane in a process regulated by an 
E3 ligase called inducible degrader of the LDL receptor 
(IDOL; see below).

Following endocytosis, LDL- carried cholesteryl 
esters gradually progress through the endo- lysosomal 
system to finally be hydrolysed by a lysosomal acid 
lipase to generate cholesterol that is then exported from 
the lysosomal lumen by concerted actions of NPC2, 

NPC1 and lysosome- associated glycoprotein LAMP2 
(ReFS135,136). Mutations in NPC1 or NPC2 result in a lyso-
somal lipid storage disorder called NPC disease (Table 1). 
Cholesterol from lysosomes can be delivered to other cel-
lular compartments (notably the ER, where it is sensed as 
described above), mostly involving non- vesicular trans-
port1,17. The lysosome–peroxisome–ER membrane con-
tact sites have been implicated in this process137–139 (Fig. 3, 
top). Cholesterol may also be transferred to the ER by the 
sterol transfer proteins oxysterol- binding protein- related 
protein 1L (ORP1L) and ORP5 (ReFS140,141). In addition to 
the above two pathways, the lysosomal cholesterol can 
first move to the plasma membrane, via a mechanism 
involving ORP2 (ReF.142), and then to the ER143.

The significance of LDLR in whole- body cholesterol 
homeostasis is highlighted by familial hypercholester-
olaemia, which is caused by impaired LDLR- mediated 
LDL uptake and the resultant LDL- c build- up in circu-
lation (Table 1). In fact, disrupting the LDLR life cycle at 
any step, such as biosynthesis, surface localization, inter-
nalization, recycling and degradation, may affect LDLR 
numbers or activities and, consequently, LDL clearance. 
Below, we emphasize IDOL and PCSK9, two regulators 
that act in an independent but complementary manner 
to regulate LDLR stability.

IDOL- induced degradation of LDLR and its regula-
tion. IDOL (also known as MYLIP) is an E3 ubiquitin 
ligase composed of an N- terminal FERM domain that 
can be divided into three subdomains (F1, F2 and F3), 
a short linker and a C- terminal RING domain holding 
the E3 ligase activity. A highly conserved residue (G51 
in humans) in the F1 subdomain is critical for IDOL 
dimerization and stability144. The F3 subdomain inter-
acts with membrane phospholipids, the cytoplasmic 
tails of LDLR and the closely related VLDL receptor and 
apoE receptor 2 (ReFS145–148). The RING domain medi-
ates IDOL dimerization and its interaction with the E2 
enzyme UBE2D (ReF.149), and catalyses ubiquitylation of 
itself and the bound substrates145–147.

Distinct from the LDLR endocytic pathway that 
involves the canonical NPxY sequence and clathrin- 
associated adaptor proteins, IDOL recognizes LDLR 
at the residues immediately preceding NPxY147,148, 
and triggers polyubiquitylation at the two residues 
following NPxY145. The ubiquitylated LDLR is inter-
nalized by endocytic adaptor epsin 1 and then sorted 
— by the activity of eSCRT complexes — to lysosomes for  
degradation145,150,151 (Fig. 3, top).

Several factors have been implicated in regulating 
IDOL- mediated degradation of LDLR. LXRs bind to 
the IDOL promoter and upregulate its expression145. 
Accordingly, activation of the LXR–IDOL axis using 
synthetic LXR agonists decreases LDLR abundance and 
limits LDL uptake in cultured cells and livers of non- 
human primates145,152,153. Depletion of MARCH6 induces 
expression of IDOL via LXRs, counteracting LDLR pro-
tein increases caused by the activated SREBP2 pathway97. 
Further, broad- spectrum inhibitors of deubiquitylat-
ing enzymes can enhance LDLR degradation through 
inducing transcription of IDOL independently of LXR154.  
At the post- translational level, a deubiquitylating enzyme  

Liver X receptors
(lxRs). The sterol- sensitive 
transcription factors that 
belong to the nuclear receptor 
family and are activated by 
oxysterols and desmosterol. 
lxRs promote cholesterol 
efflux mainly by upregulating 
aTP- binding cassette (abC) 
subfamily a member 1 
(abCa1) and abC subfamily g 
member 1 (abCg1), abCg5 
and abCg8. They also increase 
fatty acid synthesis by 
elevating sterol regulatory 
element- binding protein 1c 
(SRebP1c) expression.

Thyroid hormones
Two tyrosine- based, iodine- 
containing hormones produced 
by the thyroid gland. They 
participate in the regulation 
of metabolism and growth.

ARH
(autosomal recessive hyper-
cholesterolaemia). an adaptor 
protein that binds low- density 
lipoprotein receptor and 
mediates its endocytosis in 
hepatocytes and lymphocytes. 
Mutations in ARH cause an 
autosomal recessive form 
of hypercholesterolaemia.

NPC2
(Niemann–Pick type C2). 
a small (132 amino acids in 
humans), luminal protein that 
resides in late endosomes and 
lysosomes, and binds 
cholesterol with the iso- octyl 
side chain of cholesterol buried 
and the 3β- hydroxyl group 
exposed. Mutations in NPC2 
cause 5% of NPC cases.

ESCRT complexes
(endosomal sorting complexes 
required for transport). These 
protein complexes comprise 
multiple cytosolic subunits. 
They transport ubiquitylated 
cargo to cellular vesicles by 
promoting membrane budding 
into the endosomes to form 
multivesicular bodies, which 
eventually fuse with lysosome 
and cause degradation 
of the cargo.
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USP2 was found to interact with IDOL and attenuate its 
potency in promoting LDLR degradation155.

PCSK9-induced degradation of LDLR and its regulation. 
PCSK9 is one of nine proprotein convertases belonging 
to the secretory serine protease family. It consists of a 
prodomain and a catalytic domain, followed by a unique 
C- terminal domain enriched in both Cys and His resi-
dues156,157. The prodomain is the N- terminal component 
of a newly synthesized precursor, but is self- cleaved  
in the ER and non- covalently associates with the rest of 
the protein thereafter, blocking its protease activity. The 
processed PCSK9 is further modified by glycosylation, 
phosphorylation and sulfation158, and finally released 
into the extracellular milieu to bind LDLR and other 
surface proteins159.

PCSK9 primarily interacts with the EGF- A repeat 
of LDLR via a portion of the catalytic domain without 
involving the active site or requiring its dissociation from 
the inhibitory prodomain160,161 (which facilitates PCSK9 
anchoring at the hepatocyte surface)162. The PCSK9–
LDLR complex is internalized in clathrin- coated pits 
(via ARH, at least in some cell types)163,164, and delivered 
to endosomes where the C- terminal domain of PCSK9 
is induced to establish an interaction with the ligand- 
binding domain of LDLR by the acidic environment165. 
This increases PCSK9 binding and prevents LDLR from 
adopting a recycling- competent conformation166. LDLR 
and the bound PCSK9 are eventually degraded in lyso-
somes159 (Fig. 3, top). Although the detailed mechanism 
of this degradative process is still unknown, it is clear 
that PCSK9, unlike IDOL, employs neither ubiquityl-
ation nor the ESCRT pathway for lysosomal sorting of 
LDLR164. In addition to acting from the extracellular 
space, in HepG2 cells, the newly synthesized PCSK9 can 
direct the new pool of LDLR in the trans- Golgi towards 
lysosomes for degradation167.

PCSK9 is upregulated by SREBP2 and the liver- 
enriched transcription activator HNF1α20,168. Conversely, 
increased insulin signalling and mTORC1 activity 
downregulate PCSK9 expression via repression of 
HNF4α and HNF1α169. Other transcriptional regula-
tors of PCSK9 include E2F1, FOXO3,SIRT6 and nuclear 
receptors FXR and PPARs (as reviewed in ReFS159,170–172). 
At the post- transcriptional level, three microRNAs have 
been recently identified to directly bind PCSK9 mRNA 
and negatively regulate its expression173.

Regulation of cholesterol efflux
Although all mammalian cells can produce cholesterol, 
most (except for hepatocytes, adrenal cells and gonadal 
cells) are unable to catabolize the molecule and therefore 
need to dispose the excess out of the cell or store it as cho-
lesteryl esters in lipid droplets (see the next section). Four 
members belonging to the ATP- binding cassette (ABC) 
transporter superfamily, ABC subfamily A member 1 
(ABCA1) and ABC subfamily G (ABCG) members 1, 5 
and 8, are responsible for cholesterol efflux in a cell type- 
specific manner. In this section, we discuss the mecha-
nisms and regulators of cholesterol efflux mediated by 
ABCA1 and ABCG1 in macrophages and by ABCG5 and 
ABCG8 in hepatocytes and enterocytes (Fig. 4).

ABCA1-mediated cholesterol efflux
ABCA1 is a full transporter comprising two tandem 
repeats of the membrane- spanning domains, each of 
which has six transmembrane segments and a large 
glycosylated extracellular domain. ABCA1 is widely 
expressed throughout the body. Mutations in the 
ABCA1 gene cause Tangier disease (Table 1). Studies on 
whole- body Abca1-knockout mice and human ABCA1-
transgenic mice in various backgrounds show that 
ABCA1 has particularly important roles in macrophages, 
where it promotes removal of excess cholesterol 
(resulting from their prominent activity in scaveng-
ing lipoproteins from circulation), thereby preventing 
their transformation into foam cells and protecting  
against atherosclerosis174,175.

Lipid- free apoA- I is the primary acceptor for choles-
terol efflux by ABCA1 (ReF.176). This generates nascent 
HDL particles that, under the action of lecithin:cholesterol  
acyltransferase (LCAT), become mature and competent 
for acquiring cholesterol from ABCG1 (ReF.177) (Fig. 4, 
top). ABCA1 can directly transport or flip several 
phospholipids across the lipid bilayer178,179, most likely 
by recruiting them laterally from the inner leaflet of 
the membrane180. However, the mechanisms by which 
ABCA1 mediates cholesterol efflux to apoA- I remain 
controversial. One view is that ABCA1 can interact with 
apoA- I upon loading with cholesterol and phospholipids 
in the extracellular domains, thereby passing both lipids 
directly onto apoA- I181,182. Another view is that ABCA1, 
by promoting phospholipid transport, creates an acti-
vated microdomain that protrudes from the cell surface 
for apoA- I binding183. After unfolding of the N termi-
nus by ABCA1 (ReF.184), apoA- I is then inserted into the 
membrane and initiates micro- solubilization of the lipid 
bilayer that leads to the efflux of cholesterol and phospho-
lipids. In addition to these two models, ABCA1 and  
the associated apoA- I may undergo clathrin- dependent 
endocytosis from the cell surface to late endosomes 
and lysosomes, where apoA- I could receive LDL- c via 
ABCA1 directly from NPC2 (ReF.185). apoA- I would 
then be secreted as lipidated particles out of the cell186. 
The physiological importance of this retro- endocytosis 
pathway is a matter of controversy183. In addition, apoA- I 
binding can prevent ABCA1 from degradation in early 
endosomes187, thus promoting its recycling to the cell 
surface and subsequent nascent HDL biogenesis. These 
mechanisms are not necessarily exclusive, and given 
the pathology associated with excess cholesterol, it is 
not surprising that multiple pathways may operate in  
parallel to remove cholesterol rapidly from macrophages 
in the case of cholesterol overloading.

Consistent with a role of ABCA1 in exporting cho-
lesterol, transcription of ABCA1 is upregulated by LXRs 
and RXR188. In human macrophages, the LXRα–ABCA1 
cholesterol efflux pathway is elevated by AMPK189,190. An 
LXR- responsive long non- coding RNA (lncRNA) called 
MeXis enhances the transcription of Abca1 in mice191. 
Recently, ABCA1 was identified as a bona fide target 
of the major tumour suppressor p53 in liver and colon 
cancer cells192. Transactivation of ABCA1 by p53 inhibits 
SREBP2 processing through promoting cholesterol traf-
ficking from the plasma membrane to the ER193, thereby 

Foam cells
Cells derived from 
macrophages that take up too 
much cholesterol from oxidized 
low- density lipoproteins and 
become laden with lipid 
droplets, giving them a foamy 
appearance. Foam cells 
promote the atherosclerotic 
plaque build- up and 
inflammation during 
atherosclerosis.

Lecithin:cholesterol 
acyltransferase
(lCaT). a lipoprotein- 
associated enzyme that 
transfers the fatty acid from 
the sn-2 position of phosphati-
dylcholine (lecithin) to 
cholesterol to form a 
cholesteryl ester.
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suppressing the mevalonate pathway and liver tumori-
genesis192. How ABCA1 coordinates its role in cholesterol 
efflux and retrograde transport is worth investigating 
further. ABCA1 expression is downregulated by miR-33 
(co- transcribed with SREBP mRNAs)194–196. Additional 
transcriptional and post- transcriptional regulators of 
ABCA1 have been discussed elsewhere197–199.

ABCG1-mediated cholesterol efflux
Besides ABCA1, ABCG1 is also abundantly expressed in 
macrophages and many other cell types but expression 
is low in hepatocytes and is absent from enterocytes200. 
ABCG1 is a half- size transporter that can dimerize 
with another ABCG1 or ABCG4 to constitute func-
tional transporters. ABCG1 has an established role in 
fluxing lipids out of the cell. How it contributes to ath-
erosclerosis development is obscure, with conflicting 

results reported174. Nevertheless, combined depletion of 
Abca1 and Abcg1 induces massive lipid accumulation in 
macrophage- rich tissues201. Furthermore, macrophage 
deficiency of Abca1 and Abcg1 is sufficient to accelerate 
atherosclerosis in Ldlr- knockout mice on a chow diet202. 
These results support macrophage cholesterol efflux by 
ABCA1 and ABCG1 being directly involved in preventing  
atherosclerosis.

ABCG1 mediates cholesterol efflux to various 
extracellular acceptors including HDL, LDL, albumin, 
methyl- β-cyclodextrin and liposomes, but not to lipid- 
free apoA- I unless ABCA1 is active177,200,203,204. Other 
than cholesterol, oxysterols such as those oxidized at 
the C7 position and 25-hydroxycholesterol, and choline 
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Fig. 4 | Mechanisms regulating cholesterol efflux and 
esterification. Cholesterol export from cells is mediated by 
ATP- binding cassette (ABC) transporters. ABC subfamily A 
member 1 (ABCA1) is expressed on the plasma membrane of 
most cells, including the basolateral surface of enterocytes. 
ABC subfamily G member 1 (ABCG1) is most abundantly 
expressed on the surface of macrophages, whereas ABCG5 
and ABCG8 are expressed at the apical surface of 
enterocytes and hepatocytes, forming a heterodimer. Excess 
cholesterol is esterified by acyl coenzyme A:cholesterol 
acyltransferases (ACATs; also known as SOATs). ACAT1 is 
ubiquitously expressed and ACAT2 is predominantly 
expressed in enterocytes and hepatocytes. Top: ABCA1 
mediates cholesterol transport to apolipoprotein A- I (apoA- I) 
in the blood. In macrophages, this generates nascent  
high- density lipoprotein (HDL) that serves as an acceptor  
for ABCG1-mediated cholesterol efflux, leading to the 
production of HDL. Bottom: cholesterol and sitosterol can 
be exported by the ABCG5–ABCG8 heterodimer to the 
intestinal lumen and bile, where cholesterol is extracted by 
bile salts. Middle: repletion of cholesterol induces pathways 
for cholesterol export and storage, and acts to suppress 
further cholesterol biosynthesis. Cholesterol blocks the 
nuclear entry of nuclear factor erythroid 2 related factor 1 
(NRF1) and subsequently derepresses the activity of liver  
X receptor (LXR), thereby allowing (as shown in mice) 
transcription of the long non- coding RNA MeXis 
(macrophage- expressed LXR- induced sequence), which is  
a positive regulator of Abca1 transcription; of LeXis (liver- 
expressed LXR- induced sequence), which prevents efficient 
transcription of Srebp2 and cholesterologenic genes by 
inhibiting DNA binding of RALY (a heterogeneous 
ribonucleoprotein that is required for the maximal 
expression of cholesterologenic genes in mouse liver); and 
direct regulation of the expression of Abca1, Abcg1, Abcg5, 
Abcg8 and other proteins. Excess cholesterol can also 
allosterically (indicated by the sigmoidal curve) activate 
ACATs in the endoplasmic reticulum (ER), inducing the 
conversion of cholesterol to cholesteryl esters for storage  
in lipid droplets (LDs) or secretion as a major component  
of lipoproteins (including chylomicrons derived from 
enterocytes as a result of cholesterol absorption, and very- 
low-density lipoproteins (VLDLs) produced by hepatocytes 
as a result of cholesterol biosynthesis). Accumulating sterols 
and fatty acids (FAs) also induce reactive oxygen species 
(ROS) that oxidize ACAT2 at the Cys277 (C277) residue, 
stabilizing the protein by competitively blocking its 
ubiquitylation and proteasomal degradation, and thereby 
promoting cholesterol storage and/or export. gp78 (also 
known as AMFR), a ubiquitin ligase; INSIG, insulin- induced 
gene; SREBP2, sterol regulatory element- binding protein 2.
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phospholipids such as sphingomyelin, are the transport 
substrates for ABCG1 as well204,205.

To date, very little is known about the mechanisms 
underlying ABCG1-mediated lipid removal. The exact 
subcellular localization of ABCG1 has been a matter of 
debate, with one group reporting the restricted distribu-
tion in endosomal vesicles206,207 whereas others detected 
the protein on the plasma membrane208,209 and along 
both secretory and endocytic pathways210. ABCG1 in 
early endosomes and recycling endosomes is postulated 
to mobilize cholesterol from the ER to the inner leaflet 
of these vesicles, which, upon fusing with the plasma 
membrane, distribute cholesterol to the outer leaflet of 
the plasma membrane206. Alternatively, cholesterol in late 
endosomes may be delivered to the plasma membrane 
by non- vesicular mechanisms210. On the cell surface, 
ABCG1 is specifically localized to the microdomains 
that are enriched in cholesterol and sphingomyelin and 
are associated with flotillin 1 and actin208,211, and hence 
may redistribute membrane cholesterol and increase its 
accessibility to extracellular acceptors208,212. This expan-
sion of the free cholesterol pool, together with enhanced 
desorption from the membrane210,213, accounts for cho-
lesterol efflux mediated by ABCG1. Notably, the removal 
of plasma membrane cholesterol may solely require the 
lipid surface of extracellular acceptors177,210, which need 
not necessarily bind ABCG1 (ReFS203,213).

Like ABCA1, the ABCG1 gene harbours multiple 
response elements for the LXR and RXR heterodimers214. 
ABCG1 (and ABCA1) is repressed by miR-10b in mouse 
and human cells215. Mouse (but not human) Abcg1 is also 
a direct target of miR-33 (ReFS194–196). AMPK can prolong 
Abcg1 mRNA stability by activating the ERK pathway216. 
Recently, ovarian cancer cell- derived hyaluronic acid 
was found to upregulate the expression of both ABCA1 
and ABCG1, promoting plasma membrane cholesterol 
efflux from tumour- associated macrophages and sup-
pressing their antitumour functions217. This study impli-
cates a new function of cholesterol efflux in cancer and 
the immune system.

Cholesterol efflux by ABCG5 and ABCG8
ABCG5 and ABCG8 are nearly exclusively expressed 
in the apical surface of hepatocytes and enterocytes, 
where they function as a heterodimer mediating the 
excretion of neutral sterols, including plant sterols and 
cholesterol, into the bile and intestinal lumen, respec-
tively218. Single or combined mutations in ABCG5 
or ABCG8 result in sitosterolemia (Table 1). In mice, 
hepatic ABCG5 and ABCG8 directly promote the efflux 
of liver sterol into the bile219–221, whereas the intestinal 
counterparts are involved in disposing plasma- derived 
cholesterol into the gut lumen, most likely via the 
transintestinal cholesterol excretion pathway222,223.

ABCG5 and ABCG8 are postulated to flop choles-
terol from the inner leaflet to the outer leaflet of the can-
alicular membrane, where it is extracted by bile salts224 
(Fig. 4, bottom). In support of this notion, a putative 
cholesterol- binding region was recently identified in 
the interface of the purified human ABCG5–ABCG8 
dimer225. Phospholipids greatly facilitate biliary cho-
lesterol secretion through increasing its solubilization 

in bile salt micelles224. Other than flipping cholesterol 
across the membrane bilayer, ABCG5 and ABCG8 may 
push cholesterol partially into the aqueous phase and 
facilitate its easy pickup by the bile salt–phosphatidyl-
choline micelles226. The exact mechanism of ABCG5 
and ABCG8-mediated cholesterol efflux is yet to be 
determined.

In line with ABCG5 and ABCG8 forming a func-
tional pair, ABCG5 and ABCG8 lie head to head on the 
opposite DNA strands and share an intergenic region 
as the common promoter driving the transcription of 
both genes in opposing directions227–229. This region also 
contains several transcription factor binding sites that 
confer their responsiveness to LRH1 (ReF.230), HFN4α 
(ReF.231), GATA- binding proteins229,231, FOXO1 (ReF.232) 
and nuclear factor- κB233. LXRs have been long known as 
a positive regulator of ABCG5 and ABCG8 in vitro and 
in vivo228,234,235. This transactivation is mediated by two 
evolutionarily conserved regions distal to the intergenic 
region236. FXR agonists and bile acids can induce ABCG5 
and ABCG8 expression in human and mouse primary 
hepatocytes via the FXR response elements outside the 
intergenic region237.

Regulation of esterification
The formation of cholesteryl esters is another impor-
tant means to prevent free cholesterol accumulation 
in the cell as this pathway, mediated by ACATs, directs 
cholesterol for storage or secretion. Esterification is 
also required for the absorption of cholesterol in the 
intestine and for maintaining the balance between free 
cholesterol and cholesteryl esters.

Mammals have two ACAT isozymes, ACAT1 and 
ACAT2 (ReF.238). Both are integral membrane proteins 
with nine transmembrane domains predicted for ACAT1 
and two to five domains for ACAT2 (ReFS239–241). The first 
~140 amino acids of ACAT1 reside in the cytoplasmic 
side of the ER and mediate the formation of a tetramer 
from two homodimers242,243. A conserved His460 resi-
due constitutes, at least in part, the active site of ACAT1 
(ReFS241,244). ACAT2 shares a high sequence homology to 
ACAT1 in the C terminus and the equivalent His434 is 
key to its catalytic activity240. Whether ACAT2 exists as 
an oligomer is unknown.

Role and regulation of ACAT1
ACAT1 is present throughout the body, most abun-
dantly in macrophages, epithelial cells and steroid 
hormone- producing cells245,246. High levels of ACAT1 
are also found in macrophages of human atherosclerotic 
lesions247, suggesting the involvement of ACAT1 in the 
pathology of atherosclerosis. However, the exact role of 
ACAT1 in macrophages in the contexts of atherosclero-
sis is elusive and it is now hotly debated whether the loss 
of ACAT1 prevents or exacerbates atheroslerosis248–250. 
More recently, blocking ACAT1-mediated cholesterol 
esterification genetically or pharmacologically has been 
shown to ameliorate amyloidopathy in mouse models 
of Alzheimer disease8 and to arrest tumour growth of 
pancreatic and prostate cancer251,252. ACAT1 inhibition 
in CD8+ T cells increases plasma membrane choles-
terol levels, promoting T- cell receptor clustering and 

Transintestinal cholesterol 
excretion pathway
a process of faecal excretion 
of plasma- derived cholesterol 
from the inside of enterocytes 
to the intestinal lumen.

Micelles
The spherical assembly 
of amphiphilic molecules 
dispersed in water solvent.
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immunological synapse formation that eventually enhance 
the antitumour activity of these cells253. Addition of the 
ACAT1 inhibitor synergistically augments the efficacy 
of immunotherapy against melanoma253, highlight-
ing a novel therapeutic potential of ACAT1 in cancer 
treatments.

The purified ACAT1 protein utilizes cholesterol 
both as an activator of its enzymatic activity and as a 
substrate254. Upon activation, ACAT1 can accommo-
date sterols or sterol- like molecules that share a 3β- 
hydroxyl group, such as 7-ketocholesterol, sitosterol 
and pregnenolone, as substrates255–257. The stereo-
specific interac tions between ACAT1 and activators 
and substrates suggest an allosteric model of enzymatic 
activity, in which activator binding probably triggers a 
conformational change of the enzyme to facilitate sub-
strate binding and enhance the catalytic activity255,256 
(Fig. 4, middle).

The transcriptional regulation of ACAT1 has been 
reported as well. The human ACAT1 gene is unique in that 
it has two promoters, P1 and P7, located in chromosome 1  
and 7, respectively258. The two transcripts driven by P1 
and P7 form a mature mRNA through trans- splicing. No 
binding site for SREBPs or LXRs has been identified in 
either promoter258. Instead, the P1 promoter is activated 
by the cytokine interferon- γ and all- trans-retinoic acid259, 
the synthetic glucocorticoid dexamethasone260 and 
another cytokine, tumour necrosis factor261. Insulin  
can stimulate ACAT1 expression as well262.

Role and regulation of ACAT2
ACAT2 is predominately expressed in enterocytes and 
to some extent also in hepatocytes246,263,264. The forma-
tion of cholesteryl esters by ACAT2 directly increases 
intestinal cholesterol absorption and requires at least 
one copy of the Acat2 gene265. Global ablation of Acat2 
substantially reduces cholesterol absorption, prevents 
plasma cholesterol elevation and averts diet- induced 
hepatic cholesterol accumulation266,267. Loss or inhibition 
of ACAT2 also retards atherosclerosis in hyperlipidae-
mic mice268–270. However, ACAT2 deficiency markedly 
enhances the expression of ABCA1 regardless of die-
tary cholesterol levels267,271, through which cholesterol 
is exported and partly maintains the residual intesti-
nal cholesterol absorption in Acat2-knockout mice272. 
Combined depletion of Acat2 and Abca1 further lowers 
cholesterol absorption compared with the single knock-
outs272, without further increasing the free cholesterol 
content seen in the intestine of Acat2-knockout mice273. 
Hence, compared with ACAT1, ACAT2 seems to be a 
promising therapeutic target for atherosclerosis.

ACAT2 can be potently activated by cholesterol 
to catalyse the esterification of various sterols or ster-
oids containing a 3β- hydroxyl group with fatty acyl- 
CoA246,257,264. However, it is more efficient at esterifying 
25-hydroxycholesterol and bile acid derivatives and less 
efficient at esterifying cholesterol compared with ACAT1 
(ReF.274). The ability of ACAT2 to distinguish sitosterol 
from cholesterol is high, and only limited sitosteryl 
esters can be produced by the enzyme255,275. This ability, 
together with selective uptake of cholesterol over sitos-
terol by NPC1L1 (ReF.100) and non- discriminative efflux 

of cholesterol and sitosterol by ABCG5 and ABCG8, 
enables efficient absorption and resorption of cholesterol 
by enterocytes and hepatocytes, respectively276.

Several transcription factors, including HNF1α, 
HNF4α and CDX2, have been found to enhance ACAT2 
expression in human liver and intestinal cells277–279. At 
low cellular lipid levels, the ACAT2 protein can be 
ubiquitylated at a highly conserved Cys277 residue and 
targeted for proteasomal degradation280. By contrast, 
production of reactive oxygen species (ROS) induced 
by lipid overload causes competitive oxidation of 
Cys277, resulting in ACAT2 stabilization and increased 
cholesteryl ester formation280 (Fig. 4, middle). This 
post- translational regulation of ACAT2 protein adds 
another line of defence against lipotoxicity in the cell and  
represents an important mechanism of sensing ROS.

Interplay of the regulatory pathways
As is apparent from the above discussion, cholesterol 
metabolism comprises a network of pathways involv-
ing enzymes (for example, HMGCR, squalene mono-
oxygenase, ACAT1 and ACAT2), importers (for example,  
LDLR and NPC1L1), exporters (for example, ABCA1, 
ABCG1, ABCG5 and ABCG8), sterol transport proteins 
(for example, NPC1, NPC2 and ORPs) and, importantly, 
a large number of regulators including metabolites (for 
example, cholesterol itself, sterol intermediates, oxyster-
ols, geranylgeraniol) (Table 2), proteins (for example, 
transcription regulators, including the SCAP–SREBP 
complex and LXRs, as well as post- translational regula-
tors, such as INSIGs and E3 ubiquitin ligases) and RNAs 
(for example, microRNAs and lncRNAs).

To achieve homeostasis, the molecular machineries 
regulating cholesterol biosynthesis, uptake, transport 
(not discussed in detail here), efflux and esterification 
must be tightly controlled so that sufficient cholesterol 
is produced for cell growth and function but at the same 
time avoiding excess cholesterol accumulation. Hence, 
the system must be inherently sensitive to cellular sterol 
levels (Table 2). Indeed, various components can directly 
sense sterol fluctuations and trigger adaptive responses. 
These factors include the SCAP–SREBP complex, 
INSIGs, HMGCR, ACATs, LXRs and the recently iden-
tified nuclear factor erythroid 2-related factor 1 (NRF1) 
that regulates cholesterol efflux in the presence of high 
cholesterol via derepression of the LXR pathway281 (Fig. 4).

A site for cholesterol biosynthesis and esterification, 
and the centre of negative feedback regulation, the ER 
has surprisingly low levels (about 3% of total ER lipids 
in rat hepatocytes)282 of cholesterol at the steady state. 
Therefore, cholesterol generated from or arriving at the 
ER needs to be rapidly conveyed to other organelles, 
such as endosomes, the trans- Golgi, mitochondria and 
lipid droplets, and to the plasma membrane by vesicles 
or sterol transport proteins, or converted into the ester-
ified form by ACATs. Accumulating ER lanosterol, cho-
lesterol or its derivatives can induce rapid degradation  
of HMGCR and squalene monooxygenase. High levels of  
cholesterol also inhibit the SREBP pathway by trigger-
ing INSIGs to bind SCAP. This prevents transcription of  
a battery of genes involved in cholesterol biosynthe-
sis (for example, HMGCR and NADPH) and uptake  

Immunological synapse
The interface formed between 
an antigen- presenting cell or 
target cell and a lymphocyte 
such as a T cell, b cell or 
natural killer cell.

Sitosterol
a plant sterol with a chemical 
structure very similar to that of 
cholesterol. Sitosterol is poorly 
absorbed by healthy 
individuals and may help to 
lower cholesterol in humans.

Retinoic acid
a metabolite of vitamin a1 
(all-trans-retinol). Retinoic acid 
is a ligand of nuclear receptors 
RaR and RxR and regulates 
cell growth and differentiation.
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(for example, LDLR and NPC1L1). Expression of miR-33, 
the negative regulator of ABCA1, is downregulated upon 
cholesterol accumulation as well283. Oxysterols and des-
mosterol284 can activate the LXR pathway and upregulate 
transcription of ABCA1, ABCG1, ABCG5 and ABCG8. 
LXR activation also enhances expression of ABCA1 
via MeXis, and inhibits the expression of SREBP2 via 
LeXis285. Additionally, LXR causes upregulation of IDOL  
and RNF145, which mediate the degradation of LDLR and  
that of HMGCR and SCAP, respectively. Further, ACAT1 
and ACAT2 are allosterically activated by excess cho-
lesterol, which, together with fatty acids produced as 
a result of LXR- mediated upregulation of SREBP1c, is 
converted into less toxic cholesteryl esters for storage. 
The stabilization of ACAT2 by sterols and saturated fatty 
acids contributes to cholesterol esterification as well280.

Cholesterol homeostasis at systemic levels requires 
collaboration between various tissues, which ensures a 
balance between cholesterol absorption (in the intestine) 
and cholesterol biosynthesis (mostly in the liver) with 
its release into the bloodstream and subsequent uptake 
(and removal if necessary) by cells in the body. In the 
bloodstream, cholesterol is transported as various lipo-
proteins, mostly LDLs. As LDLR is nearly ubiquitously 
expressed, LDLs can be taken up by the liver and extra-
hepatic tissues, including the small intestine, via the 
LDLR pathway. The liver and small intestine can also 
acquire cholesterol in an NPC1L1-dependent manner. 
Cholesterol surpassing the cellular capacity follows 

three fates depending on its location: it can be stored as 
it is (in adipocytes); it can be effluxed from the cell (by 
ABCA1 and ABCG1 in macrophages; by ABCA1 from 
the basolateral surface of enterocytes and other ABCA1-
expressing cells such as hepatocytes and pneumocytes; 
and by ABCG5 and ABCG8 from the apical surface of 
enterocytes and hepatocytes); and it can be esterified (by 
ACAT1 in all cells, and by ACAT2 in enterocytes and 
hepatocytes). Cholesterol efflux from peripheral cells to 
plasma apoA- I generates HDLs, which are then trans-
ported back to the liver for scavenger receptor class B 
type I- mediated uptake. Cholesterol released from the 
liver can be either resorbed or excreted from the body.

Conclusions and perspectives
Cholesterol homeostasis has been extensively inves-
tigated in the last century and is still gaining much 
attention today owing to the intimate implication in a 
growing list of diseases beyond cardiovascular disease, 
such as the peroxisome disorders137, Alzheimer disease8 
and cancers192,251–253,286. Over the past 5 years, many 
structures of key regulators (the SCAP–SREBP com-
plex22, INSIG homologue287, squalene monooxygen-
ase catalytic domain89, NPC1 (ReF.288), ABCA1 (ReF.180), 
ABCG5 and ABCG8 (ReF.225)) have been resolved; addi-
tional mechanisms have been delineated (for example, 
demonstration of the roles of ABCG5 and ABCG8 in 
cholesterol excretion219,222,223, and of NPC1L1 in intes-
tinal cholesterol absorption103); other mechanisms 

Table 2 | Homeostatic regulation of cholesterol metabolism by sterols

Signals Functiona effect on cholesterol 
homeostasisb

Lanosterol, oxysterols, 
geranylgeraniol

HMGCR degradation Biosynthesis ↓

Cholesterol SM degradation Biosynthesis ↓

Cholesterol SREBP pathway 
inactivation

Cholesterologenic genes ↓ Biosynthesis ↓

LDLR ↓ Uptake ↓

NPC1L1 ↓ Uptake ↓

miR-33 ↓ and thus ABCA1 ↑ Efflux ↑

Oxysterols, desmosterol LXR activation ABCA1, ABCG1, ABCG5, ABCG8 ↑ Efflux ↑

MeXis ↑ and thus ABCA1 ↑ Efflux ↑

LeXis ↑ and thus SREBP2 and its target genes ↓ Biosynthesis ↓

IDOL ↑ and thus LDLR ↓ Uptake ↓

RNF145 ↑ and thus HMGCR and SCAP ↓ Biosynthesis ↓

SREBP1c ↑ and thus FA biosynthesis ↑ –c

Cholesterol NRF1 retention in the ER and thus derepression of the LXR pathway Efflux ↑

Cholesterol, oxysterols ACAT1 and ACAT2 allosteric activation Esterification ↑

ACAT2 stabilization Esterification ↑
ABCA1, ATP- binding cassette subfamily A member 1; ABCG, ATP- binding cassette subfamily G member ; ACAT, acyl- coenzyme 
A:cholesterol acyltransferase; ER , endoplasmic reticulum; FA , fatty acid; HMGCR , 3-hydroxy-3-methylglutaryl coenzyme A 
reductase; IDOL , inducible degrader of the LDL receptor ; LDL , low- density lipoprotein; LDLR , LDL receptor ; LeXis, liver- expressed 
LXR- induced sequence; LXR , liver X receptor ; MeXis, macrophage- expressed LXR- induced sequence; NPC1L1, Niemann–Pick 
type C1-like 1 protein; NRF1, nuclear factor erythroid 2 related factor 1; RNF145, RING- finger protein 145; SCAP, SREBP- cleavage 
activating protein; SM, squalene monooxygenase; SREBP, sterol regulatory element- binding protein. aChanges (upregulation ↑ 
or downregulation ↓) in the expression of genes (italicized) and proteins induced by specific sterols. bAssociated changes in 
cholesterol metabolic pathways that ensure maintenance of cholesterol homeostasis in the presence of sterols. cFA produced 
upon LXR activation is esterified with cholesterol to form cholesteryl ester.
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have been refined with new details (for example, 
demonstration of cholesterol- induced conformational 
changes in SCAP)289; new regulators of cholesterol 
biosynthesis (RNF145 (ReFS34,61), MARCH6 (ReF.93) and 
UBIAD1 (ReFS67,290)), uptake (LIMA1 (ReF.104)), efflux 
(NRF1 (ReF.281), LeXis285 and MeXis191) and esterification 
(ROS)280 and new pathways (for example, transintestinal 
cholesterol excretion)222 have been identified; and new 
functions of known proteins (for example, ABCA1 in 
retrograde sterol transport)193 have been characterized. 
These advances provide invaluable mechanistic insights 
into whole- body cholesterol metabolism under physio-
logical and pathophysiological conditions, opening 
new possibilities for therapeutic interventions for the  
treatment of cholesterol- related diseases (Table 1).

At present, cholesterol metabolism is widely targeted 
in the context of cardiovascular disorders. Currently, 
statins, which function as HMGCR inhibitors, have been 
widely used for primary and secondary prevention of 
cardiovascular disease. However, statin efficacy can be 
limited by compensatory increases in HMGCR protein. 
Ezetimibe and the PCSK9 inhibitors further decrease 
LDL- c levels and improve cardiovascular outcomes in 
hyperlipidaemic individuals on statins291,292. Inspired by 
lanosterol- induced HMGCR degradation, a compound 
structurally analogous to lanosterol was recently devel-
oped to combat statin- associated HMGCR elevation 

and prevent atherosclerotic plaque formation in mice293. 
Other than cardiovascular disease, cholesterol lowering 
seems to be a promising strategy for the treatment of 
cancers9 and congenital diseases (for example, the cho-
lesterol mobilizer 2-hydroxypropyl- β-cyclodextrin has 
been demonstrated to ameliorate symptoms of NPC 
disease)294–296. However, more work is needed to lessen 
the side effects and to search for more effective and safer 
agents that modify cholesterol metabolism.

Several important questions pertaining to cholesterol 
metabolism remain unanswered. The current models  
and theory about cholesterol metabolism are mostly 
based on work on peripheral tissues, which are separated 
from the brain by the blood–brain barrier. Whether 
cholesterol levels are maintained in a similar way in 
the brain is still uncertain, but this knowledge will be 
key to understand the association of cholesterol with 
neuro degenerative disorders. It will also be interesting 
to study cholesterol metabolism in the less explored cell 
types (for example, stem cells, immune cells, neurons 
and so forth). How cholesterol metabolism responds to 
additional signals other than lipids needs investigation. 
The new functions of cholesterol, sterol intermediates  
of the mevalonate pathway and cholesterol derivatives 
are also important directions to follow.
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